PRODUCTO VECTORIAL
- Si μ = (2,-1,3)
V = (0,1,7)
W = (1,4,5)
a) μX (VXW)
i j k
0 1 7 = (5-28)i – (0-7)j + (0-1)k = -23i +7j -1k
1 4 5
i j k
2 -1 3 = (1-21)i – (-2+69)j + (14-23)k = -20i -67j -9k
-23 7 -1
b) (μXV)XW
i j k
2 -1 3 = ( -7-3)i – (14-0)j + (2-0)k = -10i -14j +2k
0 1 7
i j k
-10 -14 2 = (-70-8)i – (-50-2)j +( -40+14)k = -78i +52j -26k
1 4 5
c) (μXV)- 2W
i j k
2 -1 3 = ( -7-3)i – (14-0)j + (2-0)k = -10i -14j +2k
0 1 7
(μXV)- 2W = -10i -14j +2k – 2(1, 4, 5)
= -10i -14j +2k – 2i – 8j – 10k
= -12i - 22j - 8k
- Hallar el área del triangulo que tiene vértices P,Q,R.
P( 1,5,-2)
Q( 0,0,0)
R ( 3,5,1)
P1P2 (-1,-5,2)
P1P3 (2, 0, 3)
P1P2 X P1P3 = i j k
-1 -5 2 = ( -15-0)i – (-3-4)j + ( 0+10)k
2 0 3
= -15i +7j +10k
= √(-15i) +(7j) +(10k)
= 19.33 / 2
No hay comentarios:
Publicar un comentario